3.2 \(\int x \sin (a+b x+c x^2) \, dx\)

Optimal. Leaf size=123 \[ -\frac{\sqrt{\frac{\pi }{2}} b \sin \left (a-\frac{b^2}{4 c}\right ) \text{FresnelC}\left (\frac{b+2 c x}{\sqrt{2 \pi } \sqrt{c}}\right )}{2 c^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} b \cos \left (a-\frac{b^2}{4 c}\right ) S\left (\frac{b+2 c x}{\sqrt{c} \sqrt{2 \pi }}\right )}{2 c^{3/2}}-\frac{\cos \left (a+b x+c x^2\right )}{2 c} \]

[Out]

-Cos[a + b*x + c*x^2]/(2*c) - (b*Sqrt[Pi/2]*Cos[a - b^2/(4*c)]*FresnelS[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])])/(2*
c^(3/2)) - (b*Sqrt[Pi/2]*FresnelC[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])]*Sin[a - b^2/(4*c)])/(2*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0371549, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {3461, 3447, 3351, 3352} \[ -\frac{\sqrt{\frac{\pi }{2}} b \sin \left (a-\frac{b^2}{4 c}\right ) \text{FresnelC}\left (\frac{b+2 c x}{\sqrt{2 \pi } \sqrt{c}}\right )}{2 c^{3/2}}-\frac{\sqrt{\frac{\pi }{2}} b \cos \left (a-\frac{b^2}{4 c}\right ) S\left (\frac{b+2 c x}{\sqrt{c} \sqrt{2 \pi }}\right )}{2 c^{3/2}}-\frac{\cos \left (a+b x+c x^2\right )}{2 c} \]

Antiderivative was successfully verified.

[In]

Int[x*Sin[a + b*x + c*x^2],x]

[Out]

-Cos[a + b*x + c*x^2]/(2*c) - (b*Sqrt[Pi/2]*Cos[a - b^2/(4*c)]*FresnelS[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])])/(2*
c^(3/2)) - (b*Sqrt[Pi/2]*FresnelC[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])]*Sin[a - b^2/(4*c)])/(2*c^(3/2))

Rule 3461

Int[((d_.) + (e_.)*(x_))*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> -Simp[(e*Cos[a + b*x + c*x^2])/(
2*c), x] + Dist[(2*c*d - b*e)/(2*c), Int[Sin[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*
d - b*e, 0]

Rule 3447

Int[Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Cos[(b^2 - 4*a*c)/(4*c)], Int[Sin[(b + 2*c*x)^2/
(4*c)], x], x] - Dist[Sin[(b^2 - 4*a*c)/(4*c)], Int[Cos[(b + 2*c*x)^2/(4*c)], x], x] /; FreeQ[{a, b, c}, x] &&
 NeQ[b^2 - 4*a*c, 0]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int x \sin \left (a+b x+c x^2\right ) \, dx &=-\frac{\cos \left (a+b x+c x^2\right )}{2 c}-\frac{b \int \sin \left (a+b x+c x^2\right ) \, dx}{2 c}\\ &=-\frac{\cos \left (a+b x+c x^2\right )}{2 c}-\frac{\left (b \cos \left (a-\frac{b^2}{4 c}\right )\right ) \int \sin \left (\frac{(b+2 c x)^2}{4 c}\right ) \, dx}{2 c}-\frac{\left (b \sin \left (a-\frac{b^2}{4 c}\right )\right ) \int \cos \left (\frac{(b+2 c x)^2}{4 c}\right ) \, dx}{2 c}\\ &=-\frac{\cos \left (a+b x+c x^2\right )}{2 c}-\frac{b \sqrt{\frac{\pi }{2}} \cos \left (a-\frac{b^2}{4 c}\right ) S\left (\frac{b+2 c x}{\sqrt{c} \sqrt{2 \pi }}\right )}{2 c^{3/2}}-\frac{b \sqrt{\frac{\pi }{2}} C\left (\frac{b+2 c x}{\sqrt{c} \sqrt{2 \pi }}\right ) \sin \left (a-\frac{b^2}{4 c}\right )}{2 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.371194, size = 111, normalized size = 0.9 \[ -\frac{\sqrt{2 \pi } b \sin \left (a-\frac{b^2}{4 c}\right ) \text{FresnelC}\left (\frac{b+2 c x}{\sqrt{2 \pi } \sqrt{c}}\right )+\sqrt{2 \pi } b \cos \left (a-\frac{b^2}{4 c}\right ) S\left (\frac{b+2 c x}{\sqrt{c} \sqrt{2 \pi }}\right )+2 \sqrt{c} \cos (a+x (b+c x))}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sin[a + b*x + c*x^2],x]

[Out]

-(2*Sqrt[c]*Cos[a + x*(b + c*x)] + b*Sqrt[2*Pi]*Cos[a - b^2/(4*c)]*FresnelS[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])]
+ b*Sqrt[2*Pi]*FresnelC[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])]*Sin[a - b^2/(4*c)])/(4*c^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 100, normalized size = 0.8 \begin{align*} -{\frac{\cos \left ( c{x}^{2}+bx+a \right ) }{2\,c}}-{\frac{b\sqrt{2}\sqrt{\pi }}{4} \left ( \cos \left ({\frac{1}{c} \left ({\frac{{b}^{2}}{4}}-ca \right ) } \right ){\it FresnelS} \left ({\frac{\sqrt{2}}{\sqrt{\pi }} \left ( cx+{\frac{b}{2}} \right ){\frac{1}{\sqrt{c}}}} \right ) -\sin \left ({\frac{1}{c} \left ({\frac{{b}^{2}}{4}}-ca \right ) } \right ){\it FresnelC} \left ({\frac{\sqrt{2}}{\sqrt{\pi }} \left ( cx+{\frac{b}{2}} \right ){\frac{1}{\sqrt{c}}}} \right ) \right ){c}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(c*x^2+b*x+a),x)

[Out]

-1/2*cos(c*x^2+b*x+a)/c-1/4*b/c^(3/2)*2^(1/2)*Pi^(1/2)*(cos((1/4*b^2-c*a)/c)*FresnelS(2^(1/2)/Pi^(1/2)/c^(1/2)
*(c*x+1/2*b))-sin((1/4*b^2-c*a)/c)*FresnelC(2^(1/2)/Pi^(1/2)/c^(1/2)*(c*x+1/2*b)))

________________________________________________________________________________________

Maxima [C]  time = 2.72878, size = 1305, normalized size = 10.61 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

-1/8*(((I*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) - I*sqrt(pi)*(erf(1/2*sqrt(-(4*I*c
^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b^2*cos(-1/4*(b^2 - 4*a*c)/c) + (sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4
*I*b*c*x + I*b^2)/c)) - 1) + sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b^2*sin(-1/4*
(b^2 - 4*a*c)/c) + ((2*I*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) - 2*I*sqrt(pi)*(erf
(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b*c*cos(-1/4*(b^2 - 4*a*c)/c) + 2*(sqrt(pi)*(erf(1/2*sq
rt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) + sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c))
- 1))*b*c*sin(-1/4*(b^2 - 4*a*c)/c))*x)*cos(1/2*arctan2((4*c^2*x^2 + 4*b*c*x + b^2)/c, 0)) + ((sqrt(pi)*(erf(1
/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) + sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)
/c)) - 1))*b^2*cos(-1/4*(b^2 - 4*a*c)/c) + (-I*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) -
1) + I*sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b^2*sin(-1/4*(b^2 - 4*a*c)/c) + (2*
(sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) + sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*
I*b*c*x + I*b^2)/c)) - 1))*b*c*cos(-1/4*(b^2 - 4*a*c)/c) + (-2*I*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c
*x + I*b^2)/c)) - 1) + 2*I*sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b*c*sin(-1/4*(b
^2 - 4*a*c)/c))*x)*sin(1/2*arctan2((4*c^2*x^2 + 4*b*c*x + b^2)/c, 0)) + (2*c*(e^(1/4*(4*I*c^2*x^2 + 4*I*b*c*x
+ I*b^2)/c) + e^(-1/4*(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c))*cos(-1/4*(b^2 - 4*a*c)/c) + c*(2*I*e^(1/4*(4*I*c^2
*x^2 + 4*I*b*c*x + I*b^2)/c) - 2*I*e^(-1/4*(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c))*sin(-1/4*(b^2 - 4*a*c)/c))*sq
rt((4*c^2*x^2 + 4*b*c*x + b^2)/abs(c)))/(c^2*sqrt((4*c^2*x^2 + 4*b*c*x + b^2)/abs(c)))

________________________________________________________________________________________

Fricas [A]  time = 1.5618, size = 325, normalized size = 2.64 \begin{align*} -\frac{\sqrt{2} \pi b \sqrt{\frac{c}{\pi }} \cos \left (-\frac{b^{2} - 4 \, a c}{4 \, c}\right ) \operatorname{S}\left (\frac{\sqrt{2}{\left (2 \, c x + b\right )} \sqrt{\frac{c}{\pi }}}{2 \, c}\right ) + \sqrt{2} \pi b \sqrt{\frac{c}{\pi }} \operatorname{C}\left (\frac{\sqrt{2}{\left (2 \, c x + b\right )} \sqrt{\frac{c}{\pi }}}{2 \, c}\right ) \sin \left (-\frac{b^{2} - 4 \, a c}{4 \, c}\right ) + 2 \, c \cos \left (c x^{2} + b x + a\right )}{4 \, c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*pi*b*sqrt(c/pi)*cos(-1/4*(b^2 - 4*a*c)/c)*fresnel_sin(1/2*sqrt(2)*(2*c*x + b)*sqrt(c/pi)/c) + sq
rt(2)*pi*b*sqrt(c/pi)*fresnel_cos(1/2*sqrt(2)*(2*c*x + b)*sqrt(c/pi)/c)*sin(-1/4*(b^2 - 4*a*c)/c) + 2*c*cos(c*
x^2 + b*x + a))/c^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \sin{\left (a + b x + c x^{2} \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(c*x**2+b*x+a),x)

[Out]

Integral(x*sin(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [C]  time = 1.22087, size = 247, normalized size = 2.01 \begin{align*} -\frac{\frac{i \, \sqrt{2} \sqrt{\pi } b \operatorname{erf}\left (-\frac{1}{4} \, \sqrt{2}{\left (2 \, x + \frac{b}{c}\right )}{\left (-\frac{i \, c}{{\left | c \right |}} + 1\right )} \sqrt{{\left | c \right |}}\right ) e^{\left (-\frac{i \, b^{2} - 4 i \, a c}{4 \, c}\right )}}{{\left (-\frac{i \, c}{{\left | c \right |}} + 1\right )} \sqrt{{\left | c \right |}}} + 2 \, e^{\left (i \, c x^{2} + i \, b x + i \, a\right )}}{8 \, c} - \frac{-\frac{i \, \sqrt{2} \sqrt{\pi } b \operatorname{erf}\left (-\frac{1}{4} \, \sqrt{2}{\left (2 \, x + \frac{b}{c}\right )}{\left (\frac{i \, c}{{\left | c \right |}} + 1\right )} \sqrt{{\left | c \right |}}\right ) e^{\left (-\frac{-i \, b^{2} + 4 i \, a c}{4 \, c}\right )}}{{\left (\frac{i \, c}{{\left | c \right |}} + 1\right )} \sqrt{{\left | c \right |}}} + 2 \, e^{\left (-i \, c x^{2} - i \, b x - i \, a\right )}}{8 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(c*x^2+b*x+a),x, algorithm="giac")

[Out]

-1/8*(I*sqrt(2)*sqrt(pi)*b*erf(-1/4*sqrt(2)*(2*x + b/c)*(-I*c/abs(c) + 1)*sqrt(abs(c)))*e^(-1/4*(I*b^2 - 4*I*a
*c)/c)/((-I*c/abs(c) + 1)*sqrt(abs(c))) + 2*e^(I*c*x^2 + I*b*x + I*a))/c - 1/8*(-I*sqrt(2)*sqrt(pi)*b*erf(-1/4
*sqrt(2)*(2*x + b/c)*(I*c/abs(c) + 1)*sqrt(abs(c)))*e^(-1/4*(-I*b^2 + 4*I*a*c)/c)/((I*c/abs(c) + 1)*sqrt(abs(c
))) + 2*e^(-I*c*x^2 - I*b*x - I*a))/c